杭州百度竞价外包面对海量的数据,很多人都不知道从如何准备、如何开展,如何得出结论。下面为杭州百度大家介绍做数据分析时的3个经典的思路,希望在数据分析的实际应用中能给大家带来帮助。

1、数据分析的基本步骤

上面我们提到了数据分析与商业结果之间关联的重要性,所有商业数据分析都应该以业务场景为起始思考点,以业务决策作为终点。数据分析该先做什么、后做什么?基于此,我们提出了商业数据分析流程的五个基本步骤。

第一步:要先挖掘业务含义,理解数据分析的背景、前提以及想要关联的业务场景结果是什么。

第二步:需要制定分析计划,如何对场景拆分,如何推断。

第三步:从分析计划中拆分出需要的数据,真正落地分析本身。

第四步:从数据结果中,判断提炼出商务洞察。

第五步:根据数据结果洞察,最终产出商业决策。

举个例子:

案例场景是某国内互联网金融理财类网站,市场部在百度和hao123上都有持续的广告投放,吸引网页端流量。最近内部同事建议尝试投放神马移动搜索渠道获取流量;另外也需要评估是否加入金山网络联盟进行深度广告投放。

第一步:挖掘业务含义

首先要了解市场部想优化什么,并以此为北极星指标去衡量。对于渠道效果评估,重要的是业务转化,所以无论是神马移动搜索还是金山渠道,重点在于如何通过数据手段衡量转化效果,也可以进一步根据转化效果,优化不同渠道的运营策略。

第二步,制定分析计划

以“投资理财”为核心转化点,分配一定的预算进行流量测试,观察对比注册数量及最终转化的效果。记下俩可以持续关注这些人重复购买理财产品的次数,进一步判断渠道质量。

第三步,拆分查询数据

既然分析计划中需要比对渠道流量,那么我们需要各个渠道追踪流量、落地页停留时间、落地页跳出率、网站访问深度以及订单等类型数据,进行深入的分析和落地。

第四步,提炼业务洞察

根据数据结果,比对神马移动搜索和金山网络联盟投放后的效果,根据流量和转化两个核心KPI,观察结果并推测业务含义。如果神马移动搜索效果不好,可以思考是否产品适合移动端的客户群体;或者仔细观察落地页表现是否有可以优化的内容等,需找出业务洞察。

第五步,产出商业决策

根据数据洞察,指引渠道的决策制定。比如停止神马渠道的投放,继续跟进金山网络联盟进行评估;或优化移动端落地页,更改用户运营策略等等。

以上这些都是商务数据分析拆解和完成推论的基本步骤。在接下来的内容中,我们都会有这个分析思路。

2、内外因素分解法

在数据分析的过程中,会有很多因素影响到我们的北极星指标,那么如何找到这些因素呢?在此向大家推荐内外因素分解法。内外因素分解法是把问题拆成四部分,包括内部因素、外部因素、可控和不可控,然后再一步步解决每一个问题。

举个例子:

某社交招聘类网站,分为求职者端和企业端。其盈利模式一般是向企业端收费,其中一个收费方式是购买职位的广告位。业务人员发现,“发布职位”的数量在过去的6月中有缓慢下降的趋势。对于这类某一数据指标下降的问题,可以怎么分析呢?

根据内外因素分解法,我们可以从四个角度依次去分析可能的影响因素。

内部可控因素:产品近期上线更新、市场投放渠道变化、产品粘性、新老用户留存问题、核心目标的转化。

外部可控因素:市场竞争对手近期行为、用户使用习惯的变化、招聘需求随时间的变化。

内部不可控因素:产品策略(移动端/PC端)、公司整体战略、公司客户群定位(比如只做医疗行业招聘)。

外部不可控因素:互联网招聘行业趋势、整体经济形势、季节性变化。

有了内外因素分解法,我们就可以较为全面地分析数据指标,避免可能遗失的影响因素并且对症下药。

3、DOSS思路

DOSS思路是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化解决方案的方式。快速规模化有效的增长解决方案,DOSS是一个有效的途径。

举个例子:

某在线教育平台提供免费课程视频,同时售卖付费会员,为付费会员提供更多高阶课程内容。如果我想将一套计算机技术的付费课程,推送给一群持续在看C++免费课程的用户,那么数据分析应该如何支持呢?

我们按DOSS思路的四个步骤,分解如下:

具体问题:

预测是否有可能帮助某一群组客户购买课程。

整体影响:

首先根据这类人群的免费课程的使用情况进行数据分析、数据挖掘的预测,之后进行延伸,比如对整体的影响,除了计算机类,对其他类型的课程都进行关注。

单一回答:

针对该群用户进行建模,监控该模型对于最终转化的影响。

规模化方案:

之后推出规模化的解决方案,对符合某种行为轨迹和特征的行为进行建模,产品化课程推荐模型。